American English V+/l/ and V+/r/ Sequences: Segments and Gestures

María Riera
maria.riera@urv.cat

Joaquín Romero
joaquin.romero@urv.cat

Universitat Rovira i Virgili
Tarragona, Spain

CUNY Phonology Forum Conference on the Segment
January 11-13, 2012
1.1 Previous Studies

Schwa-like element perceived in AmE final V+/l/ & V+/r/ sequences

 - *excrecent* schwa
 - transitional vocalic element after high front vowels
tongue movement through /a/-like configuration from V to C

- **Lavoie & Cohn** (1999)
 - monosyllables of *non-low tense pure vowels* + /l/ or /r/
 - sesquisyllables
 - pronounced with 1 or 2 syllables

- **Hall** (2003, 2006)
 - *intrusive vowels* (vs. epenthetic vowels)
 - are *phonologically invisible*
 - cannot act as *syllable nuclei*
 - do **not** add a *syllable* to the word
 - do **not** involve the *addition* of a *vowel segment*
1.2 The Present Study

➢ OBJECTIVES

To **determine** whether V+/l/ and V+/r/ sequences undergo

- a phonological rule of epenthesis/insertion
- a phonetic process of coarticulation

- To explain the **presence** of the transitional vocalic element.

- To provide experimental data showing the durational and spectral (F1, F2 & F3) **characteristics** of V, T & C.

- To investigate the role of **speaking rate**.
 - To look for **variability** as a function of speaking rate:
 F1, F2, F3 & DUR values for V, T & C
 - To look into V-T and T-C relations:
 F1, F2 & F3 V-T and T-C differences
1.2 The Present Study

EXPECTED RESULTS

Variability as a function of speaking rate

• Duration differences between slow & fast productions
 – different rates (slow vs. fast)
 – intrinsic length of vowels

• F1, F2 & F3 values
 – V, T and C differences as a function of rate
 - different vowels
 - different transitions preceded by different vowels (coarticulation)
 - same consonant preceded by different transitions (coarticulation)
 – V-T and T-C differences as a function of rate
 - greater differences for V-T than for T-C

Articulatory Phonology theory
2. Method

2.1 Speakers

- 6 **subjects**: 2 female, 4 male; aged between 20-40
- speakers of **Midwestern** American English
- little or **no** specialized **phonetic training**

2.2 Stimuli

- **target words**: 15 C_1VC_2

<table>
<thead>
<tr>
<th>feel</th>
<th>bill</th>
<th>pale</th>
<th>fell</th>
<th>pal</th>
<th>Poll</th>
<th>Paul</th>
<th>hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>/fil/</td>
<td>/bil/</td>
<td>/pel/</td>
<td>/fel/</td>
<td>/pæl/</td>
<td>/pul/</td>
<td>/pəl/</td>
<td>/hol/</td>
</tr>
<tr>
<td>pull</td>
<td>pool</td>
<td>hull</td>
<td>furl</td>
<td>pile</td>
<td>howl</td>
<td>boil</td>
<td></td>
</tr>
<tr>
<td>/pul/</td>
<td>/pul/</td>
<td>/həl/</td>
<td>/fəl/</td>
<td>/pəl/</td>
<td>/həul/</td>
<td>/bəl/</td>
<td></td>
</tr>
<tr>
<td>fear</td>
<td>fair</td>
<td>par</td>
<td>pore</td>
<td>poor</td>
<td>hire</td>
<td>power</td>
<td></td>
</tr>
<tr>
<td>/fər/</td>
<td>/fær/</td>
<td>/pær/</td>
<td>/pɔr/</td>
<td>/pɔr/</td>
<td>/hær/</td>
<td>/pɔər/</td>
<td></td>
</tr>
</tbody>
</table>

C_1: non-lingual & oral to avoid/minimize coarticulatory influence

- **carrier sentence**: *Say ___ for me again.*
- + **distracters**
2.3 Data Collection

- **Production** study
- 10 randomized tokens
- PP presentation
- 2 **readings**: speaking rate variable controlled for
 - **slow** rate:
 - 4-second intervals
 - 3-second break every 20 tokens
 - **fast** rate:
 - 1-second intervals
 - 3-second break every 5 tokens
- 44,000 Hz **sampling rate**
- directly into a **computer**
- **Praat** speech analysis software
2. Method

2.4 Data Analysis

- **Segmentation** into 3 parts: V, T & C
 - "automatic" means
 - 1st derivative curve extraction for F1, F2 & F3 (Praat script)
 To identify
 - peaks of formant change
 - velocity maxima and minima
 - "manual" means
 - spectrographic **observation**
 - auditory **perception**

- **Measurements**
 - extraction – at midpoint (Praat script)
 - of F1, F2, F3 & DUR values
 - for V, T & C
 - calculation – of V-T & T-C differences
 - for F1, F2 & F3
2.4 Data Analysis

Measurement criteria

Say FEAR for me again.

2. Method

FEAR Slow Speaker 1

F1 Derivative
F2 Derivative
F3 Derivative
Say FEAR for me again.

Measurement criteria

F2 Derivative

- **Speaker 1**
- Data Analysis

FEAR Slow

Say FEAR for me again.
2.4 Data Analysis

Measurement criteria

FEAR F1 Derivative

FEAR F2 Derivative

FEAR F3 Derivative

FEAR Slow Speaker 1
2. Method

2.5 Statistical Analysis

- **Two-way factorial ANOVAs**

 - For **F1, F2, F3 & DUR** variability in **V, T & C**

 Independent variables: Rate & Context

 Dependent variables: F1, F2, F3 & DUR mean values

 - For **F1, F2 & F3** variability in **V-T & T-C differences**

 Independent variables: Rate & Context

 Dependent variables: F1, F2 and F3 mean values from V-T & T-C differences
3. Results

3.1 Two-Way ANOVAs: V, T & C

- For F1, F2, F3 & DUR variability in V, T & C
 - Independent variables: Rate & Context
 - Dependent variables: F1, F2, F3 & DUR mean values

- Overall significant differences for
 - 6 speakers
 - F1, F2, F3 & DUR
 - RATE
 - slow vs. fast
 - CONTEXT
 - /i/ vs. /ɪ/ vs. /ɛ/ vs. /æ/ vs. /ʌ/ vs. /ʊ/ vs. /u/
 - RATE*CONTEXT
 - /i/ fast = /i/ slow; /ɪ/ fast = /ɪ/ slow; /ɛ/ fast = /ɛ/ slow; etc.
 - need for one-way ANOVAs & post-hoc tests
 - vowels with similar parameters expected to behave similarly
3.1 Two-Way ANOVAs: V, T & C

- **Means** for V, T & C for 5 V+/r/ contexts
- **Overall tendency** for V, T & C means:
 - **smaller difference** between means in SLOW than in FAST
 - **smaller dispersion/separation** in SLOW than in FAST
 - **longer** for V to attain T target & for T to attain C target in SLOW than in FAST

[SLOW and FAST graphs showing differences in pitch (Hz) for V, T, and C with annotations for FEAR, FAIR, PAR, PORE, POOR]
3.1 Two-Way ANOVAs: V, T & C

- **Means** for V, T & C for 5 V+/r/ contexts
- Overall **tendency** for V, T & C means:
 - smaller difference between means in SLOW than in FAST
 - smaller dispersion/separation in SLOW than in FAST
 - longer for V to attain T target & for T to attain C target in SLOW than in FAST
3.1 Two-Way ANOVAs: V, T & C

- **Means** for V, T & C for 5 V+/r/ contexts
- Overall **tendency** for V, T & C means:
 - **smaller difference** between means in SLOW than in FAST
 - **smaller dispersion/separation** in SLOW than in FAST
 - **longer** for V to attain T target & for T to attain C target in SLOW than in FAST
3.2 Two-Way ANOVAs: V-T & T-C Differences

- For F1, F2 & F3 variability in V-T & T-C

 Independent variables: Rate & Context
 Dependent variables: F1, F2 and F3 mean values from V-T & T-C differences

- Overall significant differences for
 - 6 speakers
 - F1, F2 & F3
 - RATE
 - slow vs. fast
 - CONTEXT
 - /i/ vs. /ɪ/ vs. /ɛ/ vs. /æ/ vs. /ʌ/ vs. /ɔ/ vs. /ʊ/ vs. /u/%
 - RATE*CONTEXT
 - /i/ fast = /i/ slow; /ɪ/ fast = /ɪ/ slow; /ɛ/ fast = /ɛ/ slow; etc.
 - need for one-way ANOVAs & post-hoc tests
 - vowels with similar parameters expected to behave similarly

- Overall significant differences for
 - V + /l/ & V+/r/ sequences
 - V-T & T-C differences

EXPECTED

UNEXPECTED

- need for one-way ANOVAs & post-hoc tests
- vowels with similar parameters expected to behave similarly
3.2 Two-Way ANOVAs: V-T & T-C Differences

- **Means** for V-T & T-C differences for 8 V+/l/ contexts
- Overall **tendency** for V-T & T-C means:
 - greater differences in SLOW than in FAST
 - higher mean values in SLOW than in FAST
 - longer for V to attain T target & for T to attain C target in SLOW than in FAST
3.2 Two-Way ANOVAs: V-T & T-C Differences

- **Means** for V-T & T-C differences for 8 V+/l/ contexts.
- **Overall tendency** for V-T & T-C means:
 - greater differences in **SLOW** than in **FAST**
 - higher mean values in **SLOW** than in **FAST**
 - longer for V to attain T **target** & for T to attain C **target** in **SLOW** than in **FAST**
4. Discussion and Conclusions

- Despite **segmentation** into 3 parts,
 - V+/l/ & V+/r/ sequences = **segment 1 + transition + segment 2**

- **Variability**
 - Variable V, T & C as a function of **rate**
 - Variable T as a function of **rate**, V & C
 - **Greater V-T** than **T-C differences** as a function of **rate**

- Acoustic **data** and **results** so far:
 - evidence for dynamic process of **coarticulation**
 vs. discrete process of epenthesis/insertion
 - in accordance with **continuous** nature of **speech production**

- Speaking **rate differences**: accounted for by articulatory dynamics
 - **Increase** in speech rate
 vs. **decrease** in time for articulatory gestures to attain targets
 - The faster the rate,
 - the more **overlap** and **blending** in the transition
 - the more **difficult** to **determine** its **beginning** and **end**
Articulatory Phonology

Gestural Score

pool

Lips

Tongue Tip

Tongue Dorsum

Velum

Glottis

4. Discussion and Conclusions

Gestural Score

20/20