Investigating Present-Day English Syllabic Consonants and the Word-specific Difference on the Number of Syllables: Three Motivations

Present-Day English (PDE) has, despite the general consistency, some words in which the number of syllables diverges. The difference of the intuition among native speakers is reflected, in particular, in those containing syllabic consonants. Some linguists (Kahn, Borowsky, Giegerich, Wells, Jensen and Roach) have illustrated the words in (1) in the recent three decades and Roach (2002:76) states that “[m]ore research is needed in this area for English.” This paper throws light on the old, but unsettled question of why the word-specific difference happens and posits three motivations.

The words at issue have different morphological structures on the basis of suffixes (cf. 2). In each one, the former have three syllables and the latter two syllables. The two sorts of suffixes and the words with the syllabic consonants are highly relevant to each other. For the word-specific disyllabic ones, the morphological structures are represented as CVC + <-ly>, CVVC + <-ling> and CVC + <-ling>. PDE has actual words for each of them (see 3). This means that the latter derivational structures are assumed to be those of PDE and render possible the disyllabic ones in the words to which the syllabic consonants are relevant. Another word with the different number of syllables is realistic (Giegerich 1992). This also has two morphological structures, as in (4). There is the difference between three syllables in the former and four syllables in the latter. The latter occurs more commonly in American English (AmE) than in British English (BrE) (Wells 2008). The reason for this stems from the fact that while the latter morpheme structure induces /ri:/ with secondary stress, the placement of the secondary stress is more common in AmE.

Whether the examples in (1) are analysed as disyllabic or trisyllabic is based on the choice between the retention of the syllabic consonants and the application of the sonorant consonant to the following onset, as in (5). The reason for the fluctuation stems from the intermediate probability for both of the syllable structures. PDE syllabic consonants are highly common word-finally, on the basis of the frequency of the syllabic consonants (e.g. 6). The word-initial syllabic consonants are limited to minor examples (see 7). In word-medial positions, syllabic consonant formation occasionally occurs (e.g. 8) and the frequency is between the highly common word-final and the much less common word-initial. The other structure onset-initial /l/ in unstressed syllables has also intermediate probability. Compared with the /l/ in stressed syllable onsets and syllabic nuclei, word-medial /l/ in unstressed syllable onsets has less frequency. First, unstressed syllable onsets in PDE are less common than those in other languages due to common stressed codas. Second, /l/ itself, word-medially, appears less frequently than stops, /s/ and nasals.

The third account is based on prosodic approach to syllabifications posited by Jensen (2000), which replaces syllable-based analyses. The use of some of prosodic hierarchical categories makes the account sufficient: prosodic word for syllabic consonant formation, phonological phrase for AmE tapping, foot for RP tapping and syllable for glottal stop. (The explanation is based not only on Jensen (2000) but also on other recent work which improves it.) According to Jensen, foot-initial in the former and non-foot-initial in the latter, instead of onsets and codas, make sense as the definition. This paper adds a phonetic factor to his definition. Clear ‘l’ is articulated when followed by /j/ and dark ‘l’ when followed by /w/ despite the identical foot-internal structures. Relatively, the former variant has similar tongue posture to /j/ and the latter one to /w/, but not vice versa. It means the difference of whether or not the back of the tongue is raised. Irrespective of the foot-based analysis, clear ‘l’ has some variations on the basis of the following vowel. The fact that /l/ is less clear when followed by a back vowel is also accounted for by the position of the vowel that the back of the tongue is raised. The /l/ sounds in (1) are followed by a high front vowel. Despite the non-foot-initial environments (i.e. those following the stressed vowel), they are pronounced as clear ‘l’. It is much more common in the onset than as syllabic consonants. When syllabic [l] and stem-final /l/ are followed by a high front vowel, the lateral undergoes the effect of clear ‘l’ (e.g. Ladefoged 2006). Due to the more distinction of the allophones of the lateral, I predict that in BrE the disyllabic ones are more common.
(1) cuddly, cycling, bottling, rattling, settling
(2) cuddly \(<\text{cuddle}> + \langle-y\rangle\) \(<\text{cudd}> + \langle-ly\rangle\)
cycling \(<\text{cycle}> + \langle-ing\rangle\) \(<\text{cyc}> + \langle-ling\rangle\)
bottling \(<\text{bottle}> + \langle-ing\rangle\) \(<\text{bott}> + \langle-ling\rangle\)
rattling \(<\text{rattle}> + \langle-ing\rangle\) \(<\text{ratt}> + \langle-ling\rangle\)
settling \(<\text{settle}> + \langle-ing\rangle\) \(<\text{sett}> + \langle-ling\rangle\)
(3) a. kingly, manly
b. sideling, murseling
c. duckling,
(4) realistic \(<\text{real}> + \langle-istic\rangle\) \(<\text{re}> + \langle-al\rangle + \langle-istic\rangle\)
(5) cuddly \([\text{k\&l\l}]\) \([\text{k\&l\l}]\)
cycling \([\text{s\&kl\l}]\) \([\text{s\&kl\l}]\)
bottling \([\text{b\&tl\l}]\) \([\text{b\&tl\l}]\)
rattling \([\text{r\&tl\l}]\) \([\text{r\&tl\l}]\)
settling \([\text{set\l\l}]\) \([\text{set\l\l}]\)
(Needless to say, the syllabic and nonsyllabic laterals lead to the different number of syllables.)
(6) British English little, button, happen
(7) anaemic (Jensen 2000)
(8) fishery, happening

References